
COP 4710: Database Systems (Query Processing) Page 1 Dr. Mark Llewellyn ©

COP 4710: Database Systems

Fall 2013

Query Processing (Chapter 12)

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2013

COP 4710: Database Systems (Query Processing) Page 2 Dr. Mark Llewellyn ©

Database Tuning Concepts

• One of the main functions of a DBMS is to provide timely

answers to end users. End users interact with the DBMS through

the use of queries to generate information, using the following

general sequence:

1. The end user (client-side) application generates a query.

2. The query is sent to the DBMS (server-side).

3. The DBMS (server-side) executes the query.

4. The DBMS sends the resulting data set to the end-user (client-side)

application.

• End users expect their queries to return results as quickly as

possible. Regardless of user perceptions, the goal of database

performance is to execute queries as fast as possible.

COP 4710: Database Systems (Query Processing) Page 3 Dr. Mark Llewellyn ©

Database Tuning Concepts

• To accomplish this goal, database performance must be closely

monitored and regularly tuned.

• Database performance tuning refers to a set of activities and

procedures designed to reduce the response time of the database

system, i.e., to ensure that an end-user query is processed by the

DBMS is in the minimum amount of time.

• The time required by a query to return a result depends on many

factors, which tend to be wide-ranging and vary among

environments and vendors.

• The performance of a DBMS is constrained by three main factors:

CPU processing power, the amount of primary memory (RAM),

and I/O (disk and network) throughput. The table on the next

page summarizes these performance factors.

COP 4710: Database Systems (Query Processing) Page 4 Dr. Mark Llewellyn ©

Database Tuning Concepts

General Guidelines For Better System Performance

COP 4710: Database Systems (Query Processing) Page 5 Dr. Mark Llewellyn ©

Database Tuning Concepts

• Good database performance starts with good database design. No

amount of fine-tuning will make a poorly designed database

perform as well as a well-designed database.

• What constitutes a good, efficient database design? We’ve

already examined many of these aspects already in this course, but

from a performance point of view, the database designer should

ensure that the design makes use of the features in the DBMS that

guarantee the integrity and optimal performance of the database.

• This set of notes focuses on the fundamental concepts used to

optimize database performance by selecting the appropriate

database server configuration, using indices, and implementing

the most efficient SQL query syntax.

COP 4710: Database Systems (Query Processing) Page 6 Dr. Mark Llewellyn ©

Database Tuning Concepts

• Client side

– Generate SQL query that returns correct answer in

least amount of time

• Using minimum amount of resources at server

– SQL performance tuning

• Server side

– DBMS environment configured to respond to clients’

requests as fast as possible

• Optimum use of existing resources

– DBMS performance tuning

COP 4710: Database Systems (Query Processing) Page 7 Dr. Mark Llewellyn ©

Database Tuning Concepts

Basic DBMS Architecture

COP 4710: Database Systems (Query Processing) Page 8 Dr. Mark Llewellyn ©

Database Query Optimization Modes

• Automatic query optimization

– DBMS finds the most cost-effective access path

without user intervention

• Manual query optimization

– Requires that the optimization be selected and

scheduled by the end user or programmer

• Static query optimization

– Takes place at compilation time

• Dynamic query optimization

– Takes place at execution time

COP 4710: Database Systems (Query Processing) Page 9 Dr. Mark Llewellyn ©

Database Query Optimization Modes

• Statistically based query optimization algorithm

– Uses statistical information about the database

– Dynamic statistical generation mode

– Manual statistical generation mode

• Rule-based query optimization algorithm

– Based on a set of user-defined rules to determine the

best query access strategy

COP 4710: Database Systems (Query Processing) Page 10 Dr. Mark Llewellyn ©

Database Statistics

• The term database statistics refers to a number of

measurements about database objects and available

resources such as:

– Tables – number of rows, number of disk blocks used, row length,

number of columns, number of distinct values in each column,

minimum and maximum value in each column, and columns that are

indexed.

– Indexes – number and name of columns in the index key, number of

key values in the index, number of distinct key values in the index,

number of disk pages used by the index, etc..

– Environment resources - Number of processors used, processor

speed, logical and physical disk block size, location and size of data

files, temporary space available, etc..

COP 4710: Database Systems (Query Processing) Page 11 Dr. Mark Llewellyn ©

Database Statistics

• The DBMS uses database statistics to make critical

decisions about improving query processing efficiency.

• They can be gathered manually by the DBA or

automatically by the DBMS.

• Database statistics are stored in the system catalog in

specially designated tables.

• They are periodically updated, with more frequent

updates for database objects that are subject to frequent

change.

COP 4710: Database Systems (Query Processing) Page 12 Dr. Mark Llewellyn ©

Query Processing

• DBMS processes queries in three phases

– Parsing

• DBMS parses the query and chooses the most

efficient access/execution plan

– Execution

• DBMS executes the query using chosen execution

plan

– Fetching

• DBMS fetches the data and sends the result back to

the client

COP 4710: Database Systems (Query Processing) Page 13 Dr. Mark Llewellyn ©

Query Processing

COP 4710: Database Systems (Query Processing) Page 14 Dr. Mark Llewellyn ©

SQL Parsing Phase

• Break down the query into smaller units.

• Transform the original SQL query into a slightly

different version of original SQL code.

– Fully equivalent version

• Optimized query results are always the same as

original query.

– More efficient version

• Optimized query will almost always execute faster

than original query.

COP 4710: Database Systems (Query Processing) Page 15 Dr. Mark Llewellyn ©

SQL Parsing Phase

• Query optimizer analyzes SQL query and finds most

efficient way to access data.

– Validated for syntax compliance.

– Validated against data dictionary.

• Tables and column names are correct.

• User has proper access rights.

– Analyzed and decomposed into components.

– Optimized.

– Prepared for execution.

COP 4710: Database Systems (Query Processing) Page 16 Dr. Mark Llewellyn ©

SQL Parsing Phase

• Access plans are DBMS-specific.

– Translate client’s SQL query into a series of complex

I/O operations.

– Required to read the data from the physical data files

and generate result set.

• DBMS checks if access plan already exists for query in

SQL cache.

• DBMS reuses the access plan to save time.

• If not, optimizer evaluates various plans.

– Chosen plan placed in SQL cache.

COP 4710: Database Systems (Query Processing) Page 17 Dr. Mark Llewellyn ©

SQL Parsing Phase

Sample DBMS Access Plan I/O Operations

COP 4710: Database Systems (Query Processing) Page 18 Dr. Mark Llewellyn ©

SQL Execution Phase – Fetching/Execution

• All I/O operations indicated in access plan are executed.

– Locks acquired.

– Data retrieved and placed in data cache.

– Transaction management commands processed.

• Rows of resulting query result set are returned to client.

• DBMS may use temporary table space to store

temporary data.

• In this phase, the DBMS server coordinates the

movement of the result set rows from the server cache to

the client cache.

COP 4710: Database Systems (Query Processing) Page 19 Dr. Mark Llewellyn ©

Query Processing Bottlenecks

• Delay introduced in the processing of an I/O

operation that slows the system.

– CPU

– RAM

– Hard disk

– Network

– Application code

COP 4710: Database Systems (Query Processing) Page 20 Dr. Mark Llewellyn ©

Indices and Query Optimization

• Indices

– Crucial in speeding up data access.

– Facilitate searching, sorting, and using aggregate

functions as well as join operations.

– Ordered set of values that contains index key and

pointers.

• More efficient to use an index to access table than to

scan all rows in a table sequentially.

COP 4710: Database Systems (Query Processing) Page 21 Dr. Mark Llewellyn ©

Indices and Query Optimization

• Data sparsity: the number of different values a column

could possibly have. Sparse is equivalent to few values,

dense is equivalent to many values.

• Indexes implemented using:

– Hash indexes

– B-tree indexes

– Bitmap indexes

• The DBMS determines the best type of index to use in a

specific situation.

COP 4710: Database Systems (Query Processing) Page 22 Dr. Mark Llewellyn ©

Indices and Query Optimization

COP 4710: Database Systems (Query Processing) Page 23 Dr. Mark Llewellyn ©

Indices and Query Optimization

COP 4710: Database Systems (Query Processing) Page 24 Dr. Mark Llewellyn ©

Optimizer Options

• Query optimization is the central activity during the

parsing phase in query processing.

• During this phase, the DBMS must choose what indices

to use, how to perform join operations, which table to

use first, and so on.

• Each DBMS has it s own algorithms for determining the

most efficient way to access the data.

COP 4710: Database Systems (Query Processing) Page 25 Dr. Mark Llewellyn ©

Optimizer Options

• The query optimizer can work in one of two fashions:

– A rule-based optimizer uses preset rules and points to

determine the best approach to execute a query. The rules

assign a fixed cost to each SQL operation; the costs are added

to yield the cost of the execution plan.

– A cost-based optimizer uses sophisticated algorithms based on

statistics about the objects being accessed to determine the best

approach to execute a query. In this case, the optimizer adds

up the processing cost, the I/O costs, and the resource costs

(RAM and temporary space) to determine the total cost of a

given execution plan.

COP 4710: Database Systems (Query Processing) Page 26 Dr. Mark Llewellyn ©

Optimizer Options
• The optimizer’s objective is to find alternative ways to execute a

query - to evaluate the “cost” of each alternative and then choose

the one with the lowest cost.

• Consider the following example: Assume that you want to list all

products provided by a vendor based in Florida. You might write

the following query:

SELECT p_code, p_descript, p_price, v_name, v_date

FROM product, vendor

WHERE product.v_code = vendor.v_code

AND vendor.v_state = “FL”;

• Let’s assume that the PRODUCT table contains 7000 rows, the

VENDOR table has 300 rows, there are 10 vendors located in

Florida, and 1000 products come from vendors in Florida.

COP 4710: Database Systems (Query Processing) Page 27 Dr. Mark Llewellyn ©

Optimizer Options

• We’ll assume that only the number of rows in the two tables is

known to the optimizer.

• The primary factor in determining the most efficient access plan is

the I/O cost.

• The table on the next page illustrates two different access plans

and the respective I/O costs.

– We’ll assume that only the number of I/O disks reads is considered and to

make it simpler to understand, no indices are utilized and each row read

from a table represents an I/O cost of 1.

• Notice that the total I/O cost of access plan A is nearly 30 times

higher than that of access plan B! Obviously, plan B is chosen.

COP 4710: Database Systems (Query Processing) Page 28 Dr. Mark Llewellyn ©

Optimizer Options

Comparing Access Plans and Costs

COP 4710: Database Systems (Query Processing) Page 29 Dr. Mark Llewellyn ©

Using Hints To Affect Optimizer Options

• Generally, optimizers perform quite well under most

circumstances. In some cases however, the best access plan might

not be selected.

• Since the optimizer makes decisions based on existing statistics,

using old, outdated statistics might cause the optimizer to select a

poor access plan.

• Even using current statistics, the optimizer’s choice might not bee

the most efficient one. Sometimes, the end user would like to

change the optimizer mode for the current SQL statement. This is

done with optimizer hints, which are special instructions for the

optimizer that are embedded inside the SQL statement.

• Some examples of optimizer hints are shown on the next page.

COP 4710: Database Systems (Query Processing) Page 30 Dr. Mark Llewellyn ©

Using Hints To Affect Optimizer Options

COP 4710: Database Systems (Query Processing) Page 31 Dr. Mark Llewellyn ©

SQL Performance Tuning

• SQL performance tuning is evaluated from the client perspective.

• The goal is to illustrate some common practices that are used to

write efficient SQL code.

• Note:

– Most current generation relational DBMS perform automatic query

optimization at the server end.

– Most SQL performance optimization techniques are DBMS-specific and

therefore are rarely portable, even across different versions of the same

DBMS.

• This does not mean that you shouldn’t worry about writing good

SQL code because the system will always optimize it!

COP 4710: Database Systems (Query Processing) Page 32 Dr. Mark Llewellyn ©

SQL Performance Tuning

• Many of the performance problems that a DBMS can suffer

are related to poorly written SQL code.

• Although a DBMS provides general optimizing services, a

carefully written query will usually outperform a poorly

written query.

• Although the DML of SQL contains many different

commands, such as INSERT, DELETE, UPDATE, and

SELECT, most of what we’ll look at for performance tuning

is related to the SELECT statement and in particular the use

of indices and how to correctly write conditional expressions.

COP 4710: Database Systems (Query Processing) Page 33 Dr. Mark Llewellyn ©

Index Selectivity

• Indices are the most important technique used in SQL

performance optimization.

• Indices are used when:

– Indexed column appears by itself in search criteria of WHERE

or HAVING clause.

– Indexed column appears by itself in GROUP BY or ORDER

BY clause.

– MAX or MIN function is applied to indexed column.

– Data sparsity on indexed column is high.

• Indices are useful when you want to select a small subset

of rows from a large table based on a given condition.

COP 4710: Database Systems (Query Processing) Page 34 Dr. Mark Llewellyn ©

Index Selectivity

• The objective is to create indices that have high

selectivity.

• Index selectivity is a measure of the likelihood that an

index will be used in query processing.

• General guidelines for indexes:

– Create indexes for each attribute in WHERE, HAVING,

ORDER BY, or GROUP BY clause.

– Do not use in small tables or tables with low sparsity.

– Declare primary and foreign keys so optimizer can use

indexes in join operations.

– Declare indexes in join columns other than PK/FK.

COP 4710: Database Systems (Query Processing) Page 35 Dr. Mark Llewellyn ©

Conditional Expressions

• A conditional expression is normally expressed within

the WHERE or HAVING clauses of SQL statement.

• It restricts the output of a query to only rows matching

conditional criteria.

• Most of the query optimization techniques that involve

conditional expressions are designed to make the

optimizer’s work easier to perform.

COP 4710: Database Systems (Query Processing) Page 36 Dr. Mark Llewellyn ©

Conditional Expressions

• Common practices for efficient SQL:

– Use simple columns or literals in conditionals.

– Numeric field comparisons are faster.

– Equality comparisons are faster than inequality.

– Transform conditional expressions to use literals.

– Write equality conditions first.

– AND: use condition most likely to be false first.

– OR: use condition most likely to be true first.

– Avoid NOT.

COP 4710: Database Systems (Query Processing) Page 37 Dr. Mark Llewellyn ©

Query Formulation

• Queries are written to answer questions. To get the

correct answer, you must carefully evaluate what tables,

columns, and computations are required to generate the

desired output.

• To formulate a query you need to:

– Identify what columns and computations are required.

– Identify source tables.

– Determine how to join tables.

– Determine what selection criteria is needed.

– Determine in what order to display output.

COP 4710: Database Systems (Query Processing) Page 38 Dr. Mark Llewellyn ©

DBMS Performance Tuning

• DBMS performance tuning includes global tasks such as

managing DBMS processes in primary memory and

structures in physical storage

• DBMS performance tuning at server end focuses on

setting parameters used for the:

– Data cache – sized to permit maximum requests.

– SQL cache – most recently executed queries still

available thus skipping the parsing phase.

– Sort cache – temporary storage for ORDER BY and

GROUP BY clauses.

– Optimizer mode (cost-based or rule-based).

COP 4710: Database Systems (Query Processing) Page 39 Dr. Mark Llewellyn ©

DBMS Performance Tuning

• Managing the physical storage details of the data files

also plays an important role in DBMS performance

tuning.

• Some of the physical storage details are dependent upon

the specific hardware utilized by the system.

• Some general guidelines to follow when creating

databases are shown on the next page.

COP 4710: Database Systems (Query Processing) Page 40 Dr. Mark Llewellyn ©

DBMS Performance Tuning

• Some general guidelines for the creation of databases:

– Use RAID (Redundant Array of Independent Disks) to provide

balance between performance and fault tolerance.

– Minimize disk contention.

– Put high-usage tables in their own table spaces.

– Assign separate data files in separate storage volumes for

indexes, system, and high-usage tables.

– Take advantage of table storage organizations in database.

– Partition tables based on usage.

– Use denormalized tables where appropriate.

– Store computed and aggregate attributes in tables.

COP 4710: Database Systems (Query Processing) Page 41 Dr. Mark Llewellyn ©

Query Processing and Optimization

• A query expressed in a high-level language like SQL must

first be scanned, parsed, and validated.

• Once the above steps are completed, an internal

representation of the query is created. Typically this is either

a tree or graph structure, called a query tree or query graph.

• Using the query tree or query graph the RDBMS must devise

an execution strategy for retrieving the results from the

internal files.

• For all but the most simple queries, several different

execution strategies are possible. The process of choosing a

suitable execution strategy is called query optimization.

COP 4710: Database Systems (Query Processing) Page 42 Dr. Mark Llewellyn ©

The Steps in Query Processing

Scanning, Parsing, and Validation

query in a high-level language

intermediate form of the query

Query Optimizer

execution plan

Query Code Generator

code to execute query

Run-time Database Processor query results

COP 4710: Database Systems (Query Processing) Page 43 Dr. Mark Llewellyn ©

Query Optimization
• The term query optimization may be somewhat misleading.

Typically, no attempt is made to achieve an optimal query
execution strategy overall – merely a reasonably efficient
strategy.

• Finding an optimal strategy is usually too time consuming
except for very simple queries and for these it usually doesn’t
matter.

• Queries may be “hand-tuned” for optimal performance, but
this is rare.

• Each RDBMS will typically maintain a number of general
database access algorithms that implement basic relational
operations such as select and join. Hybrid combinations of
relational operations also typically exist.

COP 4710: Database Systems (Query Processing) Page 44 Dr. Mark Llewellyn ©

Query Optimization (cont.)

• Only execution strategies that can be implemented by the
DBMS access algorithms and which apply to the particular
database in question can be considered by the query
optimizer.

• There are two basic techniques that can be applied to query
optimization:

1. Heuristic rules: these are rules that will typically reorder the
operations in the query tree for a particular execution strategy.

2. Systematical estimation: the cost of various execution strategies are
systematically estimated and the plan with the least “cost” is chosen.
What constitutes cost can also vary. It could be a monetary cost, or it
could be a cost in terms of time or other factors.

• Most query optimizers use a combination of both techniques.

COP 4710: Database Systems (Query Processing) Page 45 Dr. Mark Llewellyn ©

Query Trees

• A query tree is a tree representation of a relational algebra

expression which represents the operand relations as leaf

nodes and the relational algebra operators as internal nodes.

• Execution of the query tree consists of executing and internal

node operation whenever its operands are available and then

replacing that internal node by the virtual relation which

results from the execution of the operation.

• Execution terminates when the root node is executed and the

resulting relation is produced.

• This technique is similar to what many compilers do for

3GLs like C.

COP 4710: Database Systems (Query Processing) Page 46 Dr. Mark Llewellyn ©

Query Tree Example
• Consider the query: “list the supplier numbers for suppliers who supply a

red part.” (this one should be really familiar by now!!)

• In relational algebra we have:

• The corresponding query tree is:

    Pspj 'red'color#p#s  

s#

*

p#

color = red

P

SPJ

COP 4710: Database Systems (Query Processing) Page 47 Dr. Mark Llewellyn ©

Query Trees

• There are usually several different ways to generate a

relational algebra expression for a query. This should be

quite obvious by now after doing the homework for the

course.

• Since several different relational algebra expressions are

possible for a given query, so too are there multiple query

trees possible for the same query.

• The next page shows several different relational algebra

expressions for a given query and the following couple of

pages illustrate the possible query trees.

COP 4710: Database Systems (Query Processing) Page 48 Dr. Mark Llewellyn ©

Query Expressions
• Query: list the names of those suppliers who ship both part

numbers P1 and P2.

SQL Version #1:

Select name

From Suppliers

Where s# In (Select s#

From Shipments

Where p# = “P1”)

And s# In (Select s#

From Shipments

Where p# = “P2”)

SQL Version #2:

Select name

From Suppliers

Where Exists (Select s#

From Shipments

Where p# = “P1” and

Suppliers.s# = Shipments.s#)

And Exists (Select s#

From Shipments

Where p# = “P2” and

Suppliers.s# = Shipments.s#)

COP 4710: Database Systems (Query Processing) Page 49 Dr. Mark Llewellyn ©

Query Expressions
• Query: list the names of those suppliers who ship both part

numbers P1 and P2.

SQL Version #3:

Select name

From Suppliers

Where s# In (Select Shipments.s#

From Shipments Cross Join Shipments As SPJ

Where Shipments.s# = SPJ.s#

And Shipments.p# = “P1”

And SPJ.p# = “P2”)

COP 4710: Database Systems (Query Processing) Page 50 Dr. Mark Llewellyn ©

Query Expressions

• Query: list the names of those suppliers who ship both part
numbers P1 and P2.

exp #1:

exp #2:

exp #3:

exp #4:

           spjsspjs 2P#p#sname1P#p#sname   

         spjspjs 2P#p#s1P#p#sname   

        1spjspj1spjspjs 2P#p.1spj1P#p.spj#sname   

      1spjspjs #p.1spj,#p.spj,#s.1spl,#s.spj#s.1spj#s.spj2P#p.1spj1P#p.spjname   

Similar to SQL

Versions #1 and

#2

Similar to SQL

Version #3

COP 4710: Database Systems (Query Processing) Page 51 Dr. Mark Llewellyn ©

Corresponding Query Trees



*

name

p# = P1

SPJ

name

S s#

*

S s#

p# = P2

SPJ

Query tree for

exp #1

p# = P2



*

name

p# = P1

SPJ

S

s#
s#

SPJ

Query tree for

exp #2

COP 4710: Database Systems (Query Processing) Page 52 Dr. Mark Llewellyn ©

Corresponding Query Trees

*

name

p# = P1

SPJ

S



p# = P2

SPJ1

Query tree for

exp #3

spj.s# = spj1.s#

*

name

spj.# = P1

SPJ

S



spj1.p# = P2

SPJ1

Query tree for

exp #4

spj.s# = spj1.s#

spj.s#, spj1.

spj.p#, spj1.p#

COP 4710: Database Systems (Query Processing) Page 53 Dr. Mark Llewellyn ©

Corresponding Query Trees

p# = P2



*

name

p# = P1

SPJ

S

s#
s#

SPJ

Original query

tree for exp #2



*

name

p# = P1

SPJ

S s#
s#

SPJ

Modified query

tree for exp #2 –

the table into the

join is smaller.

p# = P2

s#, name

COP 4710: Database Systems (Query Processing) Page 54 Dr. Mark Llewellyn ©

Basic Query Execution Algorithms

• For each operation (relational algebra operation, plus others)
as well as combinations of operations, the DBMS will
maintain one or more algorithms to execute the operation.

• Certain algorithms will apply to particular storage structures
and access paths and thus can only be utilized if the
underlying files involved in the operation include these
access paths.

• Typically, the access paths will involve indices and/or hash
tables, although other hybrid access paths are also possible.

• In the next few pages will examine some of these query
execution strategies for the basic relational algebra
operations.

COP 4710: Database Systems (Query Processing) Page 55 Dr. Mark Llewellyn ©

Algorithms for Selection Operations

• There are many different options for Select operations based on the

availability of access paths, indices, etc.

• Search algorithms for Select operations are one of two types:

– index scans: search is directed from an index structure.

– file scans: records are selected directly from the file structure.

• (FS1-linear search): Heap files typically are searched with a linear search

algorithm.

• (FS2-fast search): Sequential files are typically searched with a binary or

jump type of search algorithm.

• (IS3-primary index or hash key to extract single record): In these cases

the selection condition involves an equality comparison on a key attribute

for which a primary index has been created (or a hash key can be used.)

COP 4710: Database Systems (Query Processing) Page 56 Dr. Mark Llewellyn ©

Algorithms for Selection Operations (cont.)

• (IS4-primary index or hash key to extract multiple records): In these
cases the selection condition involves a non-equality based
comparison (<, <=, >, >=) on a key attribute for which a primary
index has been created. The primary index is used to find the record
which satisfies the equality condition and then based upon this record,
all other preceding (< or <=) or subsequent (> or >=) records are
retrieved from the ordered file.

• (IS5-clustering index to extract multiple records): In these cases the
selection condition involves an equality comparison on a non-key
attribute which has a clustering index (a secondary index). The
clustering index is used to retrieve all records which satisfy the
selection condition.

• (IS6 – secondary index, B+ tree): A selection condition with an
equality comparison, a secondary index can be used to retrieve a
single record if the indexing field is a key or to retrieve multiple
records if the indexing field is not a key. Secondary indices can also
be used for any of the comparison operators, not just equality.

COP 4710: Database Systems (Query Processing) Page 57 Dr. Mark Llewellyn ©

Algorithms for Conjunctive Selections

• Conjunctive selections are selection conditions in which
several conditions are logically AND’ed together.

• For simple (non-conjunctive) selection conditions,
optimization basically means that you check for the
existence of an access path on the attribute involved in the
condition and use it if available, otherwise a linear search is
performed.

• Query optimization for selection is most useful for
conjunctive conditions whenever more than one of the
participating attributes has an access path.

• The optimizer should choose the access path that retrieves
the fewest records in the most efficient manner.

COP 4710: Database Systems (Query Processing) Page 58 Dr. Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• The overriding concern when choosing between multiple
simple conditions in a conjunctive select condition is the
selectivity of each condition.

• Selectivity is defined as:

• The smaller the selectivity the fewer the tuples the condition
selects.

• Thus the optimizer should schedule the conjunctive selection
comparisons so that the smallest selectivity conditions are
applied first followed by the higher and higher selectivity
values so that the last condition applied has the highest
selectivity value.

#

#

of records which satisfy the condition
Selectivity

of records in the relation


COP 4710: Database Systems (Query Processing) Page 59 Dr. Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• Usually, exact selectivity values for all conditions are not available.
However, the DBMS will maintain estimates for most if not all types of
conditions and these estimates will be used by the optimizer.

• For example:

– The selectivity of an equality condition on a key attribute of a relation r(R) is:

– The selectivity of an equality condition on an attribute with n distinct values
can be estimated by:

Assuming that the records are evenly distributed across the n distinct values,
a total of |r(R)|/n records would satisfy an equality condition on this attribute.

)R(r

1

n

1

)R(r

n

)R(r













COP 4710: Database Systems (Query Processing) Page 60 Dr. Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• (IS7-conjunctive selection): If an attribute is involved in any single
simple condition in the conjunctive selection has an access path that
permits the use of any of FS2 through IS6, use that condition to retrieve
the records, then check if each retrieved record satisfies the remaining
simple conditions in the conjunctive condition.

• (IS8-conjunctive selection using a composite index): If two or more
attributes are involved in an equality condition and a composite index (or
hash structure) exists for the combined fields – use the composite index
directly.

• (IS9-conjunctive selection by intersection of record pointers): If
secondary indices are available on any or all of the attributes involved in
an equality comparison (assuming that the indices use record pointer and
not block pointers), then each index is used to retrieve the record pointers
that satisfy the individual simple conditions. The intersection of these
record pointers is the set of tuples that satisfy the conjunction.

COP 4710: Database Systems (Query Processing) Page 61 Dr. Mark Llewellyn ©

Algorithms for Join Operations

• The join operation and its variants are the most time

consuming operations in query processing.

• Most joins are either natural joins or equi-joins.

• Joins which involve two relations are called two-way joins

while joins involving more that two relations are called

multiway joins.

• While there are several different strategies that can be

employed to process two-way joins, the number of potential

strategies grows very rapidly for multiway joins.

COP 4710: Database Systems (Query Processing) Page 62 Dr. Mark Llewellyn ©

Two-way Join Strategies

• We’ll assume that the relations to be joined are named R and

S, where R contains an attribute named A and S contains an

attribute named B which are join compatible.

• For the time-being, we’ll consider only natural or equijoin

strategies involving these two attributes.

• Note that for a natural join to occur on attributes A and B, a

renaming operation on one or both of the attributes must

occur prior to the natural join operation.

– Note too, that if attributes A and B are the only join compatible

attributes in R and S, that the equi-join operation R *A=B S has the

same effect as a natural join operation.

COP 4710: Database Systems (Query Processing) Page 63 Dr. Mark Llewellyn ©

Algorithms for Two-way Join Operations

• (J1-nested loop): A brute force technique where for each record tR (outer
loop) retrieve every record sS (inner loop) and test if the two records satisfy
the join condition, namely does t.A = s.B?

• (J2-single loop w/access structure): If an index or hash key exists for one of
the two join attribute, for example, BS, retrieve each record tR one at a
time and then use the access structure to retrieve directly all matching records
sS that satisfy t.A = s.B.

• (J3-sort-merge join): If the records of both R and S are physically sorted
(ordered) by the values of the join attributes A and B, then the join can be
processed using the most efficient strategy. Both relations are scanned in the
order of the join attributes; matching the records that have the same A and B
values. In this fashion, each relation is scanned only once.

• (J4-hash-join): In this technique, the records of both relations R and S are
hashed using the same hashing function (on the join attributes) to the same
hash file. A single pass through the smaller relation will hash its records to
the hash file. A single pass through the other relation will hash its records to
the same bucket as the first pass combining all similar records.

COP 4710: Database Systems (Query Processing) Page 64 Dr. Mark Llewellyn ©

Pipelining Operations

• Query optimization can also be effected by reducing the number of
intermediate relations that are produced as a result of executing a
query stream.

• This reduction in the number of intermediate relations is
accomplished by combining several relational operations into a
single pipeline of operations. This method is also sometimes
referred to as stream-based processing.

• While the combining of operations in a pipeline eliminates some
of the cost of reading and writing intermediate relations, it does
not eliminate all reading and writing costs associated with the
operations nor does it eliminate any processing.

• As an example, consider the natural join of two relations R and S,
followed by the projection of a set of attributes from the join
result.

COP 4710: Database Systems (Query Processing) Page 65 Dr. Mark Llewellyn ©

Pipelining Operations (cont.)

• In relational algebra this query looks like: (a, b, c)(R * S)

• This set of two operations could be executed as:

– construct the join of R and S, save as intermediate table T1. [T1 = R * S]

– project the desired set of attributed from table T1. [result = (a, b, c)(T1)]

• In the pipelined execution of this query, no intermediate relation

T1 is produced. Instead, as soon as a tuple in the join of R and S is

produced it is immediately passed to the projection operation to

processing. The final result is created directly.

• In the pipelined version, results are being produced even before

the entire join has been processed.

COP 4710: Database Systems (Query Processing) Page 66 Dr. Mark Llewellyn ©

Pipelining Operations (cont.)

• There are two basic strategies that can be used to pipeline operations.

• Demand-driven pipelining: In effect, data is “pulled-up” the query

tree as operations request data to operate upon.

• Producer-driven pipelining: In effect, data is “pushed-up” the query

tree as lower level operations produce data which is sent to operations

higher in the query tree.

COP 4710: Database Systems (Query Processing) Page 67 Dr. Mark Llewellyn ©

Demand-Driven Pipelining Example

s#

*

p#

color = red

P

SPJ

Selection extracts tuple from P, if match

tuple is set up the tree, if not, it is ignored

Projection requests tuple from selection

Join requests tuple from projection (below)

and a tuple from SPJ

Projection requests data from join operation

COP 4710: Database Systems (Query Processing) Page 68 Dr. Mark Llewellyn ©

Producer-Driven Pipelining Example

s#

*

p#

color = red

P

SPJ

As soon as first tuple is produced

here is sent to projection

As soon as first tuple is produced

here is sent to join

As soon as first tuple is produced

here is sent to projection

As soon as first tuple arrives here from

join a result is produced

COP 4710: Database Systems (Query Processing) Page 69 Dr. Mark Llewellyn ©

Using Heuristics in Query Optimization

• The parser of the high-level query language generates the internal

representation of the query which is optimized according to heuristic

rules.

• The access routines which execute groups of operations together are

based upon the access paths available for the relations involved are

chosen by the query optimizer.

• One of the main heuristic rules is to apply projections and selections

as early as possible. This is useful because the size of the relations

involved in subsequent join operations (or other binary operations)

are as small as possible.

• Basically, the query optimizer generates several different query

expressions and selects the best choice.

COP 4710: Database Systems (Query Processing) Page 70 Dr. Mark Llewellyn ©

Using Heuristics in Query Optimization (cont.)

• When an equivalent query expression is generated, you must be

certain that it is in fact an equivalent expression.

• To this end, the query optimizer must follow certain transformation

rules that will ensure equivalency amongst the various query

expressions.

• The level of information available to the optimizer will affect the

effectiveness of the equivalence generation scheme.

– At the lowest level – only relation names are known:

• R  R  R

• X (R  S)  X (R)  X (S)

• A=B AND B=C AND A=C (R)  A=B AND B=C (R)

COP 4710: Database Systems (Query Processing) Page 71 Dr. Mark Llewellyn ©

Using Heuristics in Query Optimization (cont.)

– If schema information is available:

• Given R(A, B), S(B,C) with r(R) and s(S) then,

• A=a (R * S)  A=a(R) * S

– If constraint information is known, they provide even

more information and modification possibilities:

• If you know that R(A,B,C,D) with r(R) and you also know that r

satisfies BC, then A,B (r) * B,C (r)  A,B,C (r)

• In general, there are many different equivalences that will

hold and the optimizer can utilize as many as possible.

– For example: r  r  r, r  r  r, r  r  ∅

COP 4710: Database Systems (Query Processing) Page 72 Dr. Mark Llewellyn ©

Using Heuristics in Query Optimization (cont.)

• Commutivity rules can also be applied to optimize query execution.

• For example what is the difference between R * S and S * R?

– Suppose that R contains 3 tuples and S contains 5 tuples. Further

suppose that each tuple in R is 10 bytes long and each tuple in S is 100

bytes long.

– R * S: 1 pass through R generates 3  10 bytes = 30 bytes. Three passes

through S (one for each tuple generated from R) generates 15 tuples 

100 bytes = 1500 bytes. Total = 1530 bytes.

– S * R: 1 pass through S generates 5  100 bytes = 500 bytes. Five passes

through R (one for each tuple generated from S) generates 15 tuples  10

bytes = 150 bytes. Total = 650 bytes.

– Clearly, S*R is a better strategy than is R*S.

COP 4710: Database Systems (Query Processing) Page 73 Dr. Mark Llewellyn ©

Using Cost Estimation in Query Optimization

• Cost estimation is typically only used for “canned” query execution code, i.e.,
compiled queries that will be executed repeatedly.

• The time and effort required for this type of analysis is not justified for
simple one-time query execution.

• The cost estimation technique considers the cost of executing a query from
four different perspectives:

1. Access costs to secondary storage: this involves all the costs of searching,
reading, and writing secondary storage.

2. Storage costs: this involves the cost of storing the intermediate files generated by
the chosen execution strategy.

3. Computation costs: Sorting, merging, computation in attributes (selection and join
conditions).

4. Communication costs: In a distributed environment, this includes the cost of
shipping the query and/or its results to the originating site.

COP 4710: Database Systems (Query Processing) Page 74 Dr. Mark Llewellyn ©

Semantic Query Optimization

• This technique uses the semantics of the database and the

various constraints that apply to semantically modify queries

into queries which are more efficient.

• For example, suppose a user issues the following query:

– s# (qty > 100 (SPJ)) {list supplier numbers for suppliers

who ship at least one part in a quantity greater than 100.}

– If a constraint exists that states: all quantities <= 75, then

the optimizer could inform the system that the query did

not need to be executed at all and the result is simply the

empty set.

